BACK PAPER

Algebraic Number Theory

Instructor: Ramdin Mawia

Marks: 50 Time: June 05, 2025; 14:00-17:00.

Attempt THREE problems. The maximum you can score is 45. Be brief but complete; you may use results proved in class or problem sessions, unless you are asked to prove the result itself. Clearly mention the results you use.

- State whether the following statements are true or false, with brief justifications 15 (any two):
 - i. Let $\omega \in \mathbb{C}$ be a primitive 23rd root of unity. The field $K = \mathbb{Q}[\omega]$ contains an element α such that $\alpha^3 = \alpha + 2$.
 - ii. The ring of integers in $\mathbb{Q}[\sqrt{-19}]$ is $\mathbb{Z}[\sqrt{-19}]$.
 - iii. The number fields $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are isomorphic.
- 2. Prove that the class number of $\mathbb{Q}[\sqrt{-23}]$ is 3.
- Let K/F, L/F be finite extensions of number fields. Prove that a prime of F splits 15 completely in both K and L if and only if it splits completely in the compositum KL.
- 4. Show that the polynomial $f(X) = X^3 + X + 3 \in \mathbb{Z}[X]$ is irreducible. Let K = 15 $\mathbb{Q}[\alpha]$ where $\alpha \in \mathbb{C}$ is a root of f(X). Find the factorisations (into prime ideals) of 2, 3 and 5 in \mathcal{O}_K .
- 5. Let $p \equiv 1 \pmod{4}$ be a prime. Show that $u^2 \equiv -1 \pmod{p}$ for some $u \in \mathbb{Z}$. Fix **15** one such u. Define

$$\Gamma = \{ (a, b) \in \mathbb{Z}^2 : a \equiv bu \pmod{p} \}$$

- i. Prove that Γ is a full lattice in \mathbb{R}^2 of covolume p, such that $a^2 + b^2 \equiv 0 \pmod{p}$ for every $(a, b) \in \Gamma$.
- ii. Let $B_r := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r\}$. Prove that $\Gamma \cap B_{2p} \neq \{0\}$.
- iii. **[Fermat, Euler]** Use the above to show that there are integers a and b such that $a^2 + b^2 = p$.
- 6. Let L/K be a Galois extension of number fields. Prove that the decomposition 15 group $G_{\mathfrak{P}}$ is cyclic for almost all primes \mathfrak{P} of L.

-The End-

15